INTRODUCTION
Flashing forms the intersections and terminations of roof and wall cladding to seal against water penetration. The most common locations for roof flashing are at valleys, ridges, eaves, at roof-to-wall intersections and roof penetrations such as chimneys and skylights.

Flashing materials must be durable, weather resistant and compatible with adjoining materials, and should be able to accommodate movement in the roof and/or wall cladding and have low maintenance requirements.

BI-METALLIC CORROSION
Due to a phenomenon known as galvanic corrosion (also commonly known as bi-metallic corrosion) some metals commonly used as flashing materials can cause accelerated corrosion when used with COLORBOND® pre-painted steel and ZINCALUME® aluminium/zinc/magnesium alloy coated steel sheet. Refer to Corrosion Technical Bulletin CTB-12 Dissimilar Metals.

Copper Contact
Bi-metallic corrosion of COLORBOND® steel and ZINCALUME® steel occurs when these products are in direct contact with copper, and from contact with “copper-rich” water run-off e.g. hotwater system overflows (see Figure 1). Painting the outside of copper piping is recommended. Hot water discharge pipes should be extended beyond the roof, preferably to the ground.

Lead
Although lead is generally considered to be compatible with zinc-coated steel in some environments, it IS NOT compatible with COLORBOND® steel or ZINCALUME® steel. COLORBOND® steel and ZINCALUME® steel are prone to corrosion when in contact with, or receiving run-off water from, lead.

Pure zinc or aluminium are suitable alternatives as they are both compatible with COLORBOND® steel and ZINCALUME® steel, although typically neither are as malleable as lead.

However, it is recognised that lead flashing must be retained in some re-roofing situations when existing lead flashing is built into the existing masonry work. In these cases painting will provide a suitable barrier between the flashing and roofing sheet surfaces. The top surface of lead flashing should also be painted with a good quality exterior paint system so that water running off the flashing is not contaminated with lead ions which will lead to contamination and corrosion of the catchment systems.

Alternatively a plastic strip such as polythene damp course material can be used as a separator between the ZINCALUME® steel sheeting and the lead flashing. However, the top surface of the lead flashing must still be painted to prevent contamination and corrosion of the associated catchment system.

COMPATIBLE FLASHING MATERIALS
Roof penetration flashings are also available in a wide range of rubber and aluminium materials which are compatible with COLORBOND® steel and ZINCALUME® steel.

The most desirable and suitable flashing materials are COLORBOND® steel or ZINCALUME® steel sheet formed to suit the application.

While zinc-coated steel can be used as flashing material with COLORBOND® steel or ZINCALUME® steel, it has a reduced lifespan and risk of inert catchment corrosion, making it less desirable for long-term applications.

Only stainless steel flashing products should be used with COLORBOND® Stainless steel. Flashing made from zinc-coated steel, ZINCALUME® steel or COLORBOND® steel (with a ZINCALUME® steel base) is NOT compatible with COLORBOND® Stainless steel.

ROOF PENETRATIONS
The majority of roof penetrations are effectively sealed with a flexible EPDM or silicone rubber flanged sleeve, which can be obtained for flashing penetrations up to 600 mm in diameter. The metal flange around the base of the sleeve should be contoured by hand to match the sheeting profile, before it is sealed and fastened to the sheeting. This allows drainage of water run-off down the trays or valleys each side of the penetration. The sleeve tapers up from the flange to a water tight fit around the penetration. Using these rubber sleeves care must be taken not to block any valleys or trays which would prevent water draining from the high side of the roof penetration. Ponding in such areas will cause deterioration of the sheet coating which will lead to perforation.

However, if the roof penetration can be located closer to the ridge capping or other flashing units, an alternative flashing method would be to fit a simple flat tray water shed, over the top of the sheeting profile.

This should extend from under the flashing or capping down to the sleeve around the penetration thus preventing the ponding of run-off water. Often specialist flashing is required around roof penetrations such as chimneys, skylights and other architectural features. On low pitched roofs any penetration through sheeting large enough to block one or
more of the sheet drainage channels or
deck pans will require special attention
to the flashing around the penetration. This can be achieved by diverting run-off
water from the blocked channels by fitting a head gutter on the high side of
the penetration. Run-off water from the roof area immediately above the blocked
channels is then discharged into clear channels either side of the penetration.
It should be noted that the sheeting on the high side has to be stopped clear of
the penetration to allow a suitable space for installation of a head gutter which
can be flashed under and sealed, to the upper sheet.

Further details pertaining to appropriate flashing methods at roof penetrations

RECTIFICATION
Where localised corrosion has
occurred on a roof, the damaged
area should be repaired, refer to
Technical Bulletin TB-2 Overpainting
and Restoration of Exterior BlueScope
Steel Products.

RELATED BLUESCOPE STEEL
TECHNICAL BULLETINS
Technical Bulletin TB-2
Overpainting and Restoration of
Exterior BlueScope Steel Products
Corrosion Technical Bulletin CTB-12
Dissimilar Metals

REFERENCED AUSTRALIAN
STANDARDS
• AS SAA HB39:1997 – Installation
code for metal roof and wall cladding.

NOTE:
All Australian and Australian/New Zealand
Standards should be read to incorporate any and
all amendments to the most recently published
version.